2.I.1BDifferential EquationsPart IA, 2001Find the solution tody(x)dx+tanh(x)y(x)=H(x)\frac{d y(x)}{d x}+\tanh (x) y(x)=H(x)dxdy(x)+tanh(x)y(x)=H(x)in the range −∞<x<∞-\infty<x<\infty−∞<x<∞ subject to y(0)=1y(0)=1y(0)=1, where H(x)H(x)H(x) is the Heavyside function defined byH(x)={0x<01x>0H(x)= \begin{cases}0 & x<0 \\ 1 & x>0\end{cases}H(x)={01x<0x>0Sketch the solution.