The matrix
A α = ( 1 − 1 2 α + 1 1 α − 1 1 1 + α − 1 α 2 + 4 α + 1 ) A_{\alpha}=\left(\begin{array}{ccc} 1 & -1 & 2 \alpha+1 \\ 1 & \alpha-1 & 1 \\ 1+\alpha & -1 & \alpha^{2}+4 \alpha+1 \end{array}\right) A α = ⎝ ⎛ 1 1 1 + α − 1 α − 1 − 1 2 α + 1 1 α 2 + 4 α + 1 ⎠ ⎞
defines a linear map Φ α : R 3 → R 3 \Phi_{\alpha}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} Φ α : R 3 → R 3 by Φ α ( x ) = A α x \Phi_{\alpha}(\mathbf{x})=A_{\alpha} \mathbf{x} Φ α ( x ) = A α x . Find a basis for the kernel of Φ α \Phi_{\alpha} Φ α for all values of α ∈ R \alpha \in \mathbb{R} α ∈ R .
Let B = { b 1 , b 2 , b 3 } \mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\} B = { b 1 , b 2 , b 3 } and C = { c 1 , c 2 , c 3 } \mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{c}_{3}\right\} C = { c 1 , c 2 , c 3 } be bases of R 3 \mathbb{R}^{3} R 3 . Show that there exists a matrix S S S , to be determined in terms of B \mathcal{B} B and C \mathcal{C} C , such that, for every linear mapping Φ \Phi Φ , if Φ \Phi Φ has matrix A A A with respect to B \mathcal{B} B and matrix A ′ A^{\prime} A ′ with respect to C \mathcal{C} C , then A ′ = S − 1 A S A^{\prime}=S^{-1} A S A ′ = S − 1 A S .
For the bases
B = { ( 1 1 1 ) , ( 0 1 1 ) , ( 1 1 0 ) } , C = { ( 1 2 2 ) , ( 1 2 1 ) , ( 2 3 2 ) } , \mathcal{B}=\left\{\left(\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right),\left(\begin{array}{l} 0 \\ 1 \\ 1 \end{array}\right),\left(\begin{array}{l} 1 \\ 1 \\ 0 \end{array}\right)\right\}, \mathcal{C}=\left\{\left(\begin{array}{l} 1 \\ 2 \\ 2 \end{array}\right),\left(\begin{array}{l} 1 \\ 2 \\ 1 \end{array}\right),\left(\begin{array}{l} 2 \\ 3 \\ 2 \end{array}\right)\right\}, B = ⎩ ⎪ ⎨ ⎪ ⎧ ⎝ ⎛ 1 1 1 ⎠ ⎞ , ⎝ ⎛ 0 1 1 ⎠ ⎞ , ⎝ ⎛ 1 1 0 ⎠ ⎞ ⎭ ⎪ ⎬ ⎪ ⎫ , C = ⎩ ⎪ ⎨ ⎪ ⎧ ⎝ ⎛ 1 2 2 ⎠ ⎞ , ⎝ ⎛ 1 2 1 ⎠ ⎞ , ⎝ ⎛ 2 3 2 ⎠ ⎞ ⎭ ⎪ ⎬ ⎪ ⎫ ,
find the basis transformation matrix S S S and calculate S − 1 A 0 S S^{-1} A_{0} S S − 1 A 0 S .