1.II.5C

Algebra and Geometry
Part IA, 2001

The matrix

Aα=(112α+11α111+α1α2+4α+1)A_{\alpha}=\left(\begin{array}{ccc} 1 & -1 & 2 \alpha+1 \\ 1 & \alpha-1 & 1 \\ 1+\alpha & -1 & \alpha^{2}+4 \alpha+1 \end{array}\right)

defines a linear map Φα:R3R3\Phi_{\alpha}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} by Φα(x)=Aαx\Phi_{\alpha}(\mathbf{x})=A_{\alpha} \mathbf{x}. Find a basis for the kernel of Φα\Phi_{\alpha} for all values of αR\alpha \in \mathbb{R}.

Let B={b1,b2,b3}\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\} and C={c1,c2,c3}\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{c}_{3}\right\} be bases of R3\mathbb{R}^{3}. Show that there exists a matrix SS, to be determined in terms of B\mathcal{B} and C\mathcal{C}, such that, for every linear mapping Φ\Phi, if Φ\Phi has matrix AA with respect to B\mathcal{B} and matrix AA^{\prime} with respect to C\mathcal{C}, then A=S1ASA^{\prime}=S^{-1} A S.

For the bases

B={(111),(011),(110)},C={(122),(121),(232)},\mathcal{B}=\left\{\left(\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right),\left(\begin{array}{l} 0 \\ 1 \\ 1 \end{array}\right),\left(\begin{array}{l} 1 \\ 1 \\ 0 \end{array}\right)\right\}, \mathcal{C}=\left\{\left(\begin{array}{l} 1 \\ 2 \\ 2 \end{array}\right),\left(\begin{array}{l} 1 \\ 2 \\ 1 \end{array}\right),\left(\begin{array}{l} 2 \\ 3 \\ 2 \end{array}\right)\right\},

find the basis transformation matrix SS and calculate S1A0SS^{-1} A_{0} S.