1.II.7C

Algebra and Geometry
Part IA, 2001

For α,γR,α0,βC\alpha, \gamma \in \mathbb{R}, \alpha \neq 0, \beta \in \mathbb{C} and ββˉαγ\beta \bar{\beta} \geqslant \alpha \gamma the equation αzzˉβzˉβˉz+γ=0\alpha z \bar{z}-\beta \bar{z}-\bar{\beta} z+\gamma=0 describes a circle CαβγC_{\alpha \beta \gamma} in the complex plane. Find its centre and radius. What does the equation describe if ββˉ<αγ\beta \bar{\beta}<\alpha \gamma ? Sketch the circles CαβγC_{\alpha \beta \gamma} for β=γ=1\beta=\gamma=1 and α=2,1,12,12,1\alpha=-2,-1,-\frac{1}{2}, \frac{1}{2}, 1.

Show that the complex function f(z)=βzˉ/βˉf(z)=\beta \bar{z} / \bar{\beta} for β0\beta \neq 0 satisfies f(Cαβγ)=Cαβγf\left(C_{\alpha \beta \gamma}\right)=C_{\alpha \beta \gamma}.

[Hint: f(C)=Cf(C)=C means that f(z)CzCf(z) \in C \forall z \in C and wCzC\forall w \in C \quad \exists z \in C such that f(z)=w.]f(z)=w .]

For two circles C1C_{1} and C2C_{2} a function m(C1,C2)m\left(C_{1}, C_{2}\right) is defined by

m(C1,C2)=maxzC1,wC2zwm\left(C_{1}, C_{2}\right)=\max _{z \in C_{1}, w \in C_{2}}|z-w|

Prove that m(C1,C2)m(C1,C3)+m(C2,C3)m\left(C_{1}, C_{2}\right) \leqslant m\left(C_{1}, C_{3}\right)+m\left(C_{2}, C_{3}\right). Show that

m(Cα1β1γ1,Cα2β2γ2)=α1β2α2β1α1α2+β1β1α1γ1α1+β2β2α2γ2α2m\left(C_{\alpha_{1} \beta_{1} \gamma_{1}}, C_{\alpha_{2} \beta_{2} \gamma_{2}}\right)=\frac{\left|\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}\right|}{\left|\alpha_{1} \alpha_{2}\right|}+\frac{\sqrt{\beta_{1} \overline{\beta_{1}}-\alpha_{1} \gamma_{1}}}{\left|\alpha_{1}\right|}+\frac{\sqrt{\beta_{2} \overline{\beta_{2}}-\alpha_{2} \gamma_{2}}}{\left|\alpha_{2}\right|}