3.I.4AVector CalculusPart IA, 2001Suppose thatu=y2sin(xz)+xy2zcos(xz),v=2xysin(xz),w=x2y2cos(xz)u=y^{2} \sin (x z)+x y^{2} z \cos (x z), \quad v=2 x y \sin (x z), \quad w=x^{2} y^{2} \cos (x z)u=y2sin(xz)+xy2zcos(xz),v=2xysin(xz),w=x2y2cos(xz)Show that udx+vdy+wdzu d x+v d y+w d zudx+vdy+wdz is an exact differential.Show that∫(0,0,0)(π/2,1,1)udx+vdy+wdz=π2\int_{(0,0,0)}^{(\pi / 2,1,1)} u d x+v d y+w d z=\frac{\pi}{2}∫(0,0,0)(π/2,1,1)udx+vdy+wdz=2π