3.I.1FAlgebra and GeometryPart IA, 2001For a 2×22 \times 22×2 matrix A=(abcd)A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)A=(acbd), prove that A2=0A^{2}=0A2=0 if and only if a=−da=-da=−d and bc=−a2b c=-a^{2}bc=−a2. Prove that A3=0A^{3}=0A3=0 if and only if A2=0A^{2}=0A2=0.[Hint: it is easy to check that A2−(a+d)A+(ad−bc)I=0.]\left.A^{2}-(a+d) A+(a d-b c) I=0 .\right]A2−(a+d)A+(ad−bc)I=0.]