Define the indicator function IA of an event A.
Let Ii be the indicator function of the event Ai,1≤i≤n, and let N=∑1nIi be the number of values of i such that Ai occurs. Show that E(N)=∑ipi where pi=P(Ai), and find var(N) in terms of the quantities pij=P(Ai∩Aj).
Using Chebyshev's inequality or otherwise, show that
P(N=0)≤{E(N)}2var(N)