1.I.2D

Algebra and Geometry
Part IA, 2003

Find the characteristic equation, the eigenvectors a,b,c,d\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, and the corresponding eigenvalues λa,λb,λc,λd\lambda_{\mathbf{a}}, \lambda_{\mathbf{b}}, \lambda_{\mathbf{c}}, \lambda_{\mathbf{d}} of the matrix

A=(i1001i0000i1001i)A=\left(\begin{array}{cccc} i & 1 & 0 & 0 \\ 1 & i & 0 & 0 \\ 0 & 0 & i & 1 \\ 0 & 0 & -1 & i \end{array}\right)

Show that {a,b,c,d}\{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}\} spans the complex vector space C4\mathbb{C}^{4}.

Consider the four subspaces of C4\mathbb{C}^{4} defined parametrically by

z=sa,z=sb,z=sc,z=sd(zC4,sC)\mathbf{z}=s \mathbf{a}, \quad \mathbf{z}=s \mathbf{b}, \quad \mathbf{z}=s \mathbf{c}, \quad \mathbf{z}=s \mathbf{d} \quad\left(\mathbf{z} \in \mathbb{C}^{4}, s \in \mathbb{C}\right)

Show that multiplication by AA maps three of these subspaces onto themselves, and the remaining subspace into a smaller subspace to be specified.