4.II.5C
Part IA, 2003
Define what is meant by the term countable. Show directly from your definition that if is countable, then so is any subset of .
Show that is countable. Hence or otherwise, show that a countable union of countable sets is countable. Show also that for any is countable.
A function is periodic if there exists a positive integer such that, for every . Show that the set of periodic functions is countable.