3.I.1A
Part IA, 2003
The mapping of into itself is a reflection in the plane . Find the matrix of with respect to any basis of your choice, which should be specified.
The mapping of into itself is a rotation about the line through , followed by a dilatation by a factor of 2 . Find the matrix of with respect to a choice of basis that should again be specified.
Show explicitly that
and explain why this must hold, irrespective of your choices of bases.