1.I.2CAlgebra and GeometryPart IA, 2004Show that∑i=1naibi⩽(∑i=1nai2)1/2(∑i=1nbi2)1/2\sum_{i=1}^{n} a_{i} b_{i} \leqslant\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} b_{i}^{2}\right)^{1 / 2}i=1∑naibi⩽(i=1∑nai2)1/2(i=1∑nbi2)1/2for any real numbers a1,…,an,b1,…,bna_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}a1,…,an,b1,…,bn. Using this inequality, show that if a\mathbf{a}a and b\mathbf{b}b are vectors of unit length in Rn\mathbb{R}^{n}Rn then ∣a⋅b∣⩽1|\mathbf{a} \cdot \mathbf{b}| \leqslant 1∣a⋅b∣⩽1.