4.I.2ENumbers and SetsPart IA, 2004Prove by induction the following statements:i) For every integer n≥1n \geq 1n≥1,12+32+⋯+(2n−1)2=13(4n3−n)1^{2}+3^{2}+\cdots+(2 n-1)^{2}=\frac{1}{3}\left(4 n^{3}-n\right)12+32+⋯+(2n−1)2=31(4n3−n)ii) For every integer n≥1,n3+5nn \geq 1, n^{3}+5 nn≥1,n3+5n is divisible by 6 .