1.II.8C

Algebra and Geometry
Part IA, 2004

(i) The vectors a1,a2,a3\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3} in R3\mathbb{R}^{3} satisfy a1a2×a30\mathbf{a}_{1} \cdot \mathbf{a}_{2} \times \mathbf{a}_{3} \neq 0. Are a1,a2,a3\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3} necessarily linearly independent? Justify your answer by a proof or a counterexample.

(ii) The vectors a1,a2,,an\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n} in Rn\mathbb{R}^{n} have the property that every subset comprising (n1)(n-1) of the vectors is linearly independent. Are a1,a2,,an\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n} necessarily linearly independent? Justify your answer by a proof or a counterexample.

(iii) For each value of tt in the range 0t<10 \leqslant t<1, give a construction of a linearly independent set of vectors a1,a2,a3\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3} in R3\mathbb{R}^{3} satisfying

aiaj=δij+t(1δij),\mathbf{a}_{i} \cdot \mathbf{a}_{j}=\delta_{i j}+t\left(1-\delta_{i j}\right),

where δij\delta_{i j} is the Kronecker delta.