4.I.2ENumbers and SetsPart IA, 2005Give a combinatorial definition of the binomial coefficient (nm)\left(\begin{array}{l}n \\ m\end{array}\right)(nm) for any non-negative integers n,mn, mn,m.Prove that (nm)=(nn−m)\left(\begin{array}{c}n \\ m\end{array}\right)=\left(\begin{array}{c}n \\ n-m\end{array}\right)(nm)=(nn−m) for 0≤m≤n0 \leq m \leq n0≤m≤n.Prove the identities(nk)(kl)=(nl)(n−lk−l)\left(\begin{array}{l} n \\ k \end{array}\right)\left(\begin{array}{l} k \\ l \end{array}\right)=\left(\begin{array}{l} n \\ l \end{array}\right)\left(\begin{array}{l} n-l \\ k-l \end{array}\right)(nk)(kl)=(nl)(n−lk−l)and∑i=0k(mi)(nk−i)=(n+mk)\sum_{i=0}^{k}\left(\begin{array}{c} m \\ i \end{array}\right)\left(\begin{array}{c} n \\ k-i \end{array}\right)=\left(\begin{array}{c} n+m \\ k \end{array}\right)i=0∑k(mi)(nk−i)=(n+mk)