4.II.6E
Let be a relation on the set . What does it mean for to be an equivalence relation on ? Show that if is an equivalence relation on , the set of equivalence classes forms a partition of .
Let be a group, and let be a subgroup of . Define a relation on by if . Show that is an equivalence relation on , and that the equivalence classes are precisely the left cosets of in . Find a bijection from to any other coset . Deduce that if is finite then the order of divides the order of .
Let be an element of the finite group . The order of is the least positive integer for which , the identity of . If , then has a subgroup of order ; deduce that for all .
Let be a natural number. Show that the set of integers in which are prime to is a group under multiplication modulo . [You may use any properties of multiplication and divisibility of integers without proof, provided you state them clearly.]
Deduce that if is any integer prime to then , where is the Euler totient function.