3.I.3AVector CalculusPart IA, 2005Let A(t,x)\mathbf{A}(t, \mathbf{x})A(t,x) and B(t,x)\mathbf{B}(t, \mathbf{x})B(t,x) be time-dependent, continuously differentiable vector fields on R3\mathbb{R}^{3}R3 satisfying∂A∂t=∇×B and ∂B∂t=−∇×A\frac{\partial \mathbf{A}}{\partial t}=\nabla \times \mathbf{B} \quad \text { and } \quad \frac{\partial \mathbf{B}}{\partial t}=-\nabla \times \mathbf{A}∂t∂A=∇×B and ∂t∂B=−∇×AShow that for any bounded region VVV,ddt[12∫V(A2+B2)dV]=−∫S(A×B)⋅dS\frac{d}{d t}\left[\frac{1}{2} \int_{V}\left(\mathbf{A}^{2}+\mathbf{B}^{2}\right) d V\right]=-\int_{S}(\mathbf{A} \times \mathbf{B}) \cdot d \mathbf{S}dtd[21∫V(A2+B2)dV]=−∫S(A×B)⋅dSwhere SSS is the boundary of VVV.