1.I.1BAlgebra and GeometryPart IA, 2006Consider the cone KKK in R3\mathbb{R}^{3}R3 defined byx32=x12+x22,x3>0.x_{3}^{2}=x_{1}^{2}+x_{2}^{2}, \quad x_{3}>0 .x32=x12+x22,x3>0.Find a unit normal n=(n1,n2,n3)\mathbf{n}=\left(n_{1}, n_{2}, n_{3}\right)n=(n1,n2,n3) to KKK at the point x=(x1,x2,x3)\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)x=(x1,x2,x3) such that n3⩾0n_{3} \geqslant 0n3⩾0.Show that if p=(p1,p2,p3)\mathbf{p}=\left(p_{1}, p_{2}, p_{3}\right)p=(p1,p2,p3) satisfiesp32⩾p12+p22p_{3}^{2} \geqslant p_{1}^{2}+p_{2}^{2}p32⩾p12+p22and p3⩾0p_{3} \geqslant 0p3⩾0 thenp⋅n⩾0\mathbf{p} \cdot \mathbf{n} \geqslant 0p⋅n⩾0