4.I.2ENumbers and SetsPart IA, 2006Define the binomial coefficient (nr)\left(\begin{array}{l}n \\ r\end{array}\right)(nr) and prove that(n+1r)=(nr)+(nr−1) for 0<r⩽n\left(\begin{array}{c} n+1 \\ r \end{array}\right)=\left(\begin{array}{c} n \\ r \end{array}\right)+\left(\begin{array}{c} n \\ r-1 \end{array}\right) \quad \text { for } 0<r \leqslant n(n+1r)=(nr)+(nr−1) for 0<r⩽nShow also that if ppp is prime then (pr)\left(\begin{array}{l}p \\ r\end{array}\right)(pr) is divisible by ppp for 0<r<p0<r<p0<r<p.Deduce that if 0⩽k<p0 \leqslant k<p0⩽k<p and 0⩽r⩽k0 \leqslant r \leqslant k0⩽r⩽k then(p+kr)≡(kr)( mod p).\left(\begin{array}{c} p+k \\ r \end{array}\right) \equiv\left(\begin{array}{c} k \\ r \end{array}\right) \quad(\bmod p) .(p+kr)≡(kr)(modp).