Paper 1, Section I, 1A1 A

Algebra and Geometry
Part IA, 2007

(i) The spherical polar unit basis vectors er,eϕ\mathbf{e}_{r}, \mathbf{e}_{\phi} and eθ\mathbf{e}_{\theta} in R3\mathbb{R}^{3} are given in terms of the Cartesian unit basis vectors i,j\mathbf{i}, \mathbf{j} and k\mathbf{k} by

er=icosϕsinθ+jsinϕsinθ+kcosθeθ=icosϕcosθ+jsinϕcosθksinθeϕ=isinϕ+jcosϕ\begin{aligned} &\mathbf{e}_{r}=\mathbf{i} \cos \phi \sin \theta+\mathbf{j} \sin \phi \sin \theta+\mathbf{k} \cos \theta \\ &\mathbf{e}_{\theta}=\mathbf{i} \cos \phi \cos \theta+\mathbf{j} \sin \phi \cos \theta-\mathbf{k} \sin \theta \\ &\mathbf{e}_{\phi}=-\mathbf{i} \sin \phi+\mathbf{j} \cos \phi \end{aligned}

Express i,j\mathbf{i}, \mathbf{j} and k\mathbf{k} in terms of er,eϕ\mathbf{e}_{r}, \mathbf{e}_{\phi} and eθ\mathbf{e}_{\theta}.

(ii) Use suffix notation to prove the following identity for the vectors A,B\mathbf{A}, \mathbf{B}, and C\mathbf{C} in R3\mathbb{R}^{3} :

(A×B)×(A×C)=(AB×C)A(\mathbf{A} \times \mathbf{B}) \times(\mathbf{A} \times \mathbf{C})=(\mathbf{A} \cdot \mathbf{B} \times \mathbf{C}) \mathbf{A}