Paper 1, Section I, 3F3 F

Analysis
Part IA, 2007

Prove that, for positive real numbers aa and bb,

2aba+b2 \sqrt{a b} \leqslant a+b

For positive real numbers a1,a2,a_{1}, a_{2}, \ldots, prove that the convergence of

n=1an\sum_{n=1}^{\infty} a_{n}

implies the convergence of

n=1ann\sum_{n=1}^{\infty} \frac{\sqrt{a_{n}}}{n}