Paper 1, Section I, D

Analysis
Part IA, 2007

Let n=0anzn\sum_{n=0}^{\infty} a_{n} z^{n} be a complex power series. Show that there exists R[0,]R \in[0, \infty] such that n=0anzn\sum_{n=0}^{\infty} a_{n} z^{n} converges whenever z<R|z|<R and diverges whenever z>R|z|>R.

Find the value of RR for the power series

n=1znn\sum_{n=1}^{\infty} \frac{z^{n}}{n}