Paper 1, Section II, E
Part IA, 2007
State and prove the Mean Value Theorem.
Let be a function such that, for every exists and is non-negative.
(i) Show that if then .
(ii) Let and . Show that there exist and such that
and that
Paper 1, Section II, E
State and prove the Mean Value Theorem.
Let be a function such that, for every exists and is non-negative.
(i) Show that if then .
(ii) Let and . Show that there exist and such that
and that