Paper 2, Section I, BDifferential EquationsPart IA, 2007Find the solution y(x)y(x)y(x) of the equationy′′−6y′+9y=cos(2x)e3xy^{\prime \prime}-6 y^{\prime}+9 y=\cos (2 x) \mathrm{e}^{3 x}y′′−6y′+9y=cos(2x)e3xthat satisfies y(0)=0y(0)=0y(0)=0 and y′(0)=1y^{\prime}(0)=1y′(0)=1.