Let A1,A2,…,An(n⩾2) be events in a sample space. For each of the following statements, either prove the statement or provide a counterexample.
(i)
P(k=2⋂nAk∣A1)=k=2∏nP(Ak∣r=1⋂k−1Ar), provided P(k=1⋂n−1Ak)>0
(ii)
If k=1∑nP(Ak)>n−1 then P(k=1⋂nAk)>0
(iii)
If i<j∑P(Ai∩Aj)>(n2)−1 then P(k=1⋂nAk)>0.
(iv) If B is an event and if, for each k,{B,Ak} is a pair of independent events, then {B,∪k=1nAk} is also a pair of independent events.