1.I.1B

Vectors and Matrices
Part IA, 2008

State de Moivre's Theorem. By evaluating

r=1neirθ\sum_{r=1}^{n} e^{i r \theta}

or otherwise, show that

r=1ncos(rθ)=cos(nθ)cos((n+1)θ)2(1cosθ)12\sum_{r=1}^{n} \cos (r \theta)=\frac{\cos (n \theta)-\cos ((n+1) \theta)}{2(1-\cos \theta)}-\frac{1}{2}

Hence show that

r=1ncos(2pπrn+1)=1\sum_{r=1}^{n} \cos \left(\frac{2 p \pi r}{n+1}\right)=-1

where pp is an integer in the range 1pn1 \leqslant p \leqslant n.