2.I.1ADifferential EquationsPart IA, 2008Let aaa be a positive constant. Find the solution to the differential equationd4ydx4−a4y=e−ax\frac{d^{4} y}{d x^{4}}-a^{4} y=\mathrm{e}^{-a x}dx4d4y−a4y=e−axthat satisfies y(0)=1y(0)=1y(0)=1 and y→0y \rightarrow 0y→0 as x→∞x \rightarrow \inftyx→∞.