Paper 1, Section I, E

Analysis I
Part IA, 2009

Let a0,a1,a2,a_{0}, a_{1}, a_{2}, \ldots be a sequence of complex numbers. Prove that there exists R[0,]R \in[0, \infty] such that the power series n=0anzn\sum_{n=0}^{\infty} a_{n} z^{n} converges whenever z<R|z|<R and diverges whenever z>R|z|>R.

Give an example of a power series n=0anzn\sum_{n=0}^{\infty} a_{n} z^{n} that diverges if z=±1z=\pm 1 and converges if z=±iz=\pm \mathrm{i}.