Paper 3, Section II, D

Groups
Part IA, 2009

What does it mean to say that a subgroup KK of a group GG is normal?

Let ϕ:GH\phi: G \rightarrow H be a group homomorphism. Is the kernel of ϕ\phi always a subgroup of GG ? Is it always a normal subgroup? Is the image of ϕ\phi always a subgroup of HH ? Is it always a normal subgroup? Justify your answers.

Let SL(2,Z)\mathrm{SL}(2, \mathbb{Z}) denote the set of 2×22 \times 2 matrices (abcd)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) with a,b,c,dZa, b, c, d \in \mathbb{Z} and adbc=1a d-b c=1. Show that SL(2,Z)\mathrm{SL}(2, \mathbb{Z}) is a group under matrix multiplication. Similarly, when Z2\mathbb{Z}_{2} denotes the integers modulo 2 , let SL(2,Z2)\mathrm{SL}\left(2, \mathbb{Z}_{2}\right) denote the set of 2×22 \times 2 matrices (abcd)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) with a,b,c,dZ2a, b, c, d \in \mathbb{Z}_{2} and adbc=1a d-b c=1. Show that SL(2,Z2)\mathrm{SL}\left(2, \mathbb{Z}_{2}\right) is also a group under matrix multiplication.

Let f:ZZ2f: \mathbb{Z} \rightarrow \mathbb{Z}_{2} send each integer to its residue modulo 2 . Show that

ϕ:SL(2,Z)SL(2,Z2);(abcd)(f(a)f(b)f(c)f(d))\phi: \mathrm{SL}(2, \mathbb{Z}) \rightarrow \mathrm{SL}\left(2, \mathbb{Z}_{2}\right) ; \quad\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \mapsto\left(\begin{array}{ll} f(a) & f(b) \\ f(c) & f(d) \end{array}\right)

is a group homomorphism. Show that the image of ϕ\phi is isomorphic to a permutation group.