Paper 2, Section II, F

Probability
Part IA, 2010

Let X1,X2X_{1}, X_{2} be bivariate normal random variables, with the joint probability density function

fX1,X2(x1,x2)=12πσ1σ21ρ2exp[φ(x1,x2)2(1ρ2)]f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left[-\frac{\varphi\left(x_{1}, x_{2}\right)}{2\left(1-\rho^{2}\right)}\right]

where

φ(x1,x2)=(x1μ1σ1)22ρ(x1μ1σ1)(x2μ2σ2)+(x2μ2σ2)2\varphi\left(x_{1}, x_{2}\right)=\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}-2 \rho\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}\right)\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)+\left(\frac{x_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}

and x1,x2Rx_{1}, x_{2} \in \mathbb{R}.

(a) Deduce that the marginal probability density function

fX1(x1)=12πσ1exp[(x1μ1)22σ12]f_{X_{1}}\left(x_{1}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{1}} \exp \left[-\frac{\left(x_{1}-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}\right]

(b) Write down the moment-generating function of X2X_{2} in terms of μ2\mu_{2} and σ2[No\sigma_{2} \cdot[N o proofs are required.]

(c) By considering the ratio fX1,X2(x1,x2)/fX2(x2)f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) / f_{X_{2}}\left(x_{2}\right) prove that, conditional on X2=x2X_{2}=x_{2}, the distribution of X1X_{1} is normal, with mean and variance μ1+ρσ1(x2μ2)/σ2\mu_{1}+\rho \sigma_{1}\left(x_{2}-\mu_{2}\right) / \sigma_{2} and σ12(1ρ2)\sigma_{1}^{2}\left(1-\rho^{2}\right), respectively.