Paper 3, Section I, C
Part IA, 2010
Consider the vector field
defined on all of except the axis. Compute on the region where it is defined.
Let be the closed curve defined by the circle in the -plane with centre and radius 1 , and be the closed curve defined by the circle in the -plane with centre and radius 1 .
By using your earlier result, or otherwise, evaluate the line integral .
By explicit computation, evaluate the line integral . Is your result consistent with Stokes' theorem? Explain your answer briefly.