Paper 1, Section I, C

Vectors and Matrices
Part IA, 2010

(a) The complex numbers z1z_{1} and z2z_{2} satisfy the equations

z13=1,z29=512.z_{1}^{3}=1, \quad z_{2}^{9}=512 .

What are the possible values of z1z2\left|z_{1}-z_{2}\right| ? Justify your answer.

(b) Show that z1+z2z1+z2\left|z_{1}+z_{2}\right| \leqslant\left|z_{1}\right|+\left|z_{2}\right| for all complex numbers z1z_{1} and z2z_{2}. Does the inequality z1+z2+z1z22max(z1,z2)\left|z_{1}+z_{2}\right|+\left|z_{1}-z_{2}\right| \leqslant 2 \max \left(\left|z_{1}\right|,\left|z_{2}\right|\right) hold for all complex numbers z1z_{1} and z2z_{2} ? Justify your answer with a proof or a counterexample.