Paper 1, Section II, A

Vectors and Matrices
Part IA, 2010

Let AA and BB be real n×nn \times n matrices.

(i) Define the trace of A,tr(A)A, \operatorname{tr}(A), and show that tr(ATB)=tr(BTA)\operatorname{tr}\left(A^{T} B\right)=\operatorname{tr}\left(B^{T} A\right).

(ii) Show that tr(ATA)0\operatorname{tr}\left(A^{T} A\right) \geqslant 0, with tr(ATA)=0\operatorname{tr}\left(A^{T} A\right)=0 if and only if AA is the zero matrix. Hence show that

(tr(ATB))2tr(ATA)tr(BTB)\left(\operatorname{tr}\left(A^{T} B\right)\right)^{2} \leqslant \operatorname{tr}\left(A^{T} A\right) \operatorname{tr}\left(B^{T} B\right)

Under what condition on AA and BB is equality achieved?

(iii) Find a basis for the subspace of 2×22 \times 2 matrices XX such that

tr(ATX)=tr(BTX)=tr(CTX)=0 where A=(1120),B=(1102),C=(0011)\begin{gathered} \operatorname{tr}\left(A^{T} X\right)=\operatorname{tr}\left(B^{T} X\right)=\operatorname{tr}\left(C^{T} X\right)=0 \\ \text { where } \quad A=\left(\begin{array}{ll} 1 & 1 \\ 2 & 0 \end{array}\right), \quad B=\left(\begin{array}{rr} 1 & 1 \\ 0 & -2 \end{array}\right), \quad C=\left(\begin{array}{ll} 0 & 0 \\ 1 & 1 \end{array}\right) \end{gathered}