Paper 4, Section II, B
The trajectory of a particle is observed in a frame which rotates with constant angular velocity relative to an inertial frame . Given that the time derivative in of any vector is
where a dot denotes a time derivative in , show that
where is the force on the particle and is its mass.
Let be the frame that rotates with the Earth. Assume that the Earth is a sphere of radius . Let be a point on its surface at latitude , and define vertical to be the direction normal to the Earth's surface at .
(a) A particle at is released from rest in and is acted on only by gravity. Show that its initial acceleration makes an angle with the vertical of approximately
working to lowest non-trivial order in .
(b) Now consider a particle fired vertically upwards from with speed . Assuming that terms of order and higher can be neglected, show that it falls back to Earth under gravity at a distance
from . [You may neglect the curvature of the Earth's surface and the vertical variation of gravity.]