Paper 2, Section I, F
Part IA, 2011
Let be a random variable taking non-negative integer values and let be a random variable taking real values.
(a) Define the probability-generating function . Calculate it explicitly for a Poisson random variable with mean .
(b) Define the moment-generating function . Calculate it explicitly for a normal random variable .
(c) By considering a random sum of independent copies of , prove that, for general and is the moment-generating function of some random variable.