Paper 1, Section II, E

Analysis I
Part IA, 2011

For each of the following two functions f:RRf: \mathbb{R} \rightarrow \mathbb{R}, determine the set of points at which ff is continuous, and also the set of points at which ff is differentiable.

 (i) f(x)={x if xQx if xQ (ii) f(x)={xsin(1/x) if x00 if x=0\begin{aligned} &\text { (i) } f(x)= \begin{cases}x & \text { if } x \in \mathbb{Q} \\ -x & \text { if } x \notin \mathbb{Q}\end{cases} \\ &\text { (ii) } f(x)= \begin{cases}x \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases} \end{aligned}

By modifying the function in (i), or otherwise, find a function (not necessarily continuous) f:RRf: \mathbb{R} \rightarrow \mathbb{R} such that ff is differentiable at 0 and nowhere else.

Find a continuous function f:RRf: \mathbb{R} \rightarrow \mathbb{R} such that ff is not differentiable at the points 1/2,1/3,1/4,1 / 2,1 / 3,1 / 4, \ldots, but is differentiable at all other points.