Paper 1, Section II, A

Vectors and Matrices
Part IA, 2012

Explain why the number of solutions x\mathbf{x} of the simultaneous linear equations Ax=bA \mathbf{x}=\mathbf{b} is 0,1 or infinity, where AA is a real 3×33 \times 3 matrix and x\mathbf{x} and b\mathbf{b} are vectors in R3\mathbb{R}^{3}. State necessary and sufficient conditions on AA and b\mathrm{b} for each of these possibilities to hold.

Let AA and BB be real 3×33 \times 3 matrices. Give necessary and sufficient conditions on AA for there to exist a unique real 3×33 \times 3 matrix XX satisfying AX=BA X=B.

Find XX when

A=(112101120) and B=(401210311)A=\left(\begin{array}{ccc} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 2 & 0 \end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ccc} 4 & 0 & 1 \\ 2 & 1 & 0 \\ 3 & -1 & -1 \end{array}\right)