Paper 1, Section I, F

Analysis I
Part IA, 2013

(a) Suppose bnbn+10b_{n} \geqslant b_{n+1} \geqslant 0 for n1n \geqslant 1 and bn0b_{n} \rightarrow 0. Show that n=1(1)n1bn\sum_{n=1}^{\infty}(-1)^{n-1} b_{n} converges.

(b) Does the series n=21nlogn\sum_{n=2}^{\infty} \frac{1}{n \log n} converge or diverge? Explain your answer.