Paper 2, Section II, ADifferential EquationsPart IA, 2013Find x(t)x(t)x(t) and y(t)y(t)y(t) which satisfy3x˙+y˙+5x−y=2e−t+4e−3tx˙+4y˙−2x+7y=−3e−t+5e−3t\begin{aligned} &3 \dot{x}+\dot{y}+5 x-y=2 e^{-t}+4 e^{-3 t} \\ &\dot{x}+4 \dot{y}-2 x+7 y=-3 e^{-t}+5 e^{-3 t} \end{aligned}3x˙+y˙+5x−y=2e−t+4e−3tx˙+4y˙−2x+7y=−3e−t+5e−3tsubject to x=y=0x=y=0x=y=0 at t=0t=0t=0.