Paper 4, Section II, B
(a) A rigid body is made up of particles of masses at positions . Let denote the position of its centre of mass. Show that the total kinetic energy of may be decomposed into , the kinetic energy of the centre of mass, plus a term representing the kinetic energy about the centre of mass.
Suppose now that is rotating with angular velocity about its centre of mass. Define the moment of inertia of (about the axis defined by ) and derive an expression for in terms of and .
(b) Consider a uniform rod of length and mass . Two such rods and are freely hinged together at . The end is attached to a fixed point on a perfectly smooth horizontal floor and is able to rotate freely about . The rods are initially at rest, lying in a vertical plane with resting on the floor and each rod making angle with the horizontal. The rods subsequently move under gravity in their vertical plane.
Find an expression for the angular velocity of rod when it makes angle with the floor. Determine the speed at which the hinge strikes the floor.