Paper 1, Section I, A

Vectors and Matrices
Part IA, 2013

Let AA be a real 3×33 \times 3 matrix.

(i) For B=R1AB=R_{1} A with

R1=(1000cosθ1sinθ10sinθ1cosθ1)R_{1}=\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos \theta_{1} & -\sin \theta_{1} \\ 0 & \sin \theta_{1} & \cos \theta_{1} \end{array}\right)

find an angle θ1\theta_{1} so that the element b31=0b_{31}=0, where bijb_{i j} denotes the ijth i j^{\text {th }}entry of the matrix BB.

(ii) For C=R2BC=R_{2} B with b31=0b_{31}=0 and

R2=(cosθ2sinθ20sinθ2cosθ20001)R_{2}=\left(\begin{array}{ccc} \cos \theta_{2} & -\sin \theta_{2} & 0 \\ \sin \theta_{2} & \cos \theta_{2} & 0 \\ 0 & 0 & 1 \end{array}\right)

show that c31=0c_{31}=0 and find an angle θ2\theta_{2} so that c21=0c_{21}=0.

(iii) For D=R3CD=R_{3} C with c31=c21=0c_{31}=c_{21}=0 and

R3=(1000cosθ3sinθ30sinθ3cosθ3)R_{3}=\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos \theta_{3} & -\sin \theta_{3} \\ 0 & \sin \theta_{3} & \cos \theta_{3} \end{array}\right)

show that d31=d21=0d_{31}=d_{21}=0 and find an angle θ3\theta_{3} so that d32=0d_{32}=0.

(iv) Deduce that any real 3×33 \times 3 matrix can be written as a product of an orthogonal matrix and an upper triangular matrix.