Paper 4, Section I, 2E2 \mathrm{E}2ENumbers and SetsPart IA, 2014Define the binomial coefficients (nk)\left(\begin{array}{l}n \\ k\end{array}\right)(nk), for integers n,kn, kn,k satisfying n⩾k⩾0n \geqslant k \geqslant 0n⩾k⩾0. Prove directly from your definition that if n>k⩾0n>k \geqslant 0n>k⩾0 then(nk)+(nk+1)=(n+1k+1)\left(\begin{array}{l} n \\ k \end{array}\right)+\left(\begin{array}{c} n \\ k+1 \end{array}\right)=\left(\begin{array}{c} n+1 \\ k+1 \end{array}\right)(nk)+(nk+1)=(n+1k+1)and that for every m⩾0m \geqslant 0m⩾0 and n⩾0n \geqslant 0n⩾0,∑k=0m(n+kk)=(n+m+1m)\sum_{k=0}^{m}\left(\begin{array}{c} n+k \\ k \end{array}\right)=\left(\begin{array}{c} n+m+1 \\ m \end{array}\right)k=0∑m(n+kk)=(n+m+1m)