Paper 4, Section II, E
Part IA, 2014
What does it mean to say that the sequence of real numbers converges to the limit What does it mean to say that the series converges to ?
Let and be convergent series of positive real numbers. Suppose that is a sequence of positive real numbers such that for every , either or . Show that is convergent.
Show that is convergent, and that is divergent if .
Let be a sequence of positive real numbers such that is convergent. Show that is convergent. Determine (with proof or counterexample) whether or not the converse statement holds.