Paper 4, Section II, E

Numbers and Sets
Part IA, 2014

(i) State and prove the Fermat-Euler Theorem.

(ii) Let pp be an odd prime number, and xx an integer coprime to pp. Show that x(p1)/2±1(modp)x^{(p-1) / 2} \equiv \pm 1(\bmod p), and that if the congruence y2x(modp)y^{2} \equiv x(\bmod p) has a solution then x(p1)/21(modp)x^{(p-1) / 2} \equiv 1(\bmod p).

(iii) By arranging the residue classes coprime to pp into pairs {a,bx}\{a, b x\} with ab1(modp)a b \equiv 1(\bmod p), or otherwise, show that if the congruence y2x(modp)y^{2} \equiv x(\bmod p) has no solution then x(p1)/21(modp).x^{(p-1) / 2} \equiv-1(\bmod p) .

(iv) Show that 5555(mod23)5^{5^{5}} \equiv 5(\bmod 23).