Paper 2, Section II, F

Probability
Part IA, 2014

Define what it means for a random variable XX to have a Poisson distribution, and find its moment generating function.

Suppose X,YX, Y are independent Poisson random variables with parameters λ,μ\lambda, \mu. Find the distribution of X+YX+Y.

If X1,,XnX_{1}, \ldots, X_{n} are independent Poisson random variables with parameter λ=1\lambda=1, find the distribution of i=1nXi\sum_{i=1}^{n} X_{i}. Hence or otherwise, find the limit of the real sequence

an=enj=0nnjj!,nNa_{n}=e^{-n} \sum_{j=0}^{n} \frac{n^{j}}{j !}, \quad n \in \mathbb{N}

[Standard results may be used without proof provided they are clearly stated.]