Paper 4, Section I, ENumbers and SetsPart IA, 2015(a) Find all integers xxx and yyy such that6x+2y≡3( mod 53) and 17x+4y≡7( mod 53)6 x+2 y \equiv 3 \quad(\bmod 53) \quad \text { and } \quad 17 x+4 y \equiv 7 \quad(\bmod 53)6x+2y≡3(mod53) and 17x+4y≡7(mod53)(b) Show that if an integer n>4n>4n>4 is composite then (n−1)!≡0( mod n)(n-1) ! \equiv 0(\bmod n)(n−1)!≡0(modn).