Paper 2, Section II, FProbabilityPart IA, 2015Consider the functionϕ(x)=12πe−x2/2,x∈R\phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad x \in \mathbb{R}ϕ(x)=2π1e−x2/2,x∈RShow that ϕ\phiϕ defines a probability density function. If a random variable XXX has probability density function ϕ\phiϕ, find the moment generating function of XXX, and find all moments E[Xk]E\left[X^{k}\right]E[Xk], k∈Nk \in \mathbb{N}k∈N.Now definer(x)=P(X>x)ϕ(x)r(x)=\frac{P(X>x)}{\phi(x)}r(x)=ϕ(x)P(X>x)Show that for every x>0x>0x>0,1x−1x3<r(x)<1x\frac{1}{x}-\frac{1}{x^{3}}<r(x)<\frac{1}{x}x1−x31<r(x)<x1