Paper 1, Section II, 5B

Vectors and Matrices
Part IA, 2015

(i) State and prove the Cauchy-Schwarz inequality for vectors in Rn\mathbb{R}^{n}. Deduce the inequalities

a+ba+b and a+b+ca+b+c|\mathbf{a}+\mathbf{b}| \leqslant|\mathbf{a}|+|\mathbf{b}| \text { and }|\mathbf{a}+\mathbf{b}+\mathbf{c}| \leqslant|\mathbf{a}|+|\mathbf{b}|+|\mathbf{c}|

for a,b,cRn\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^{n}.

(ii) Show that every point on the intersection of the planes

xa=A,xb=B\mathbf{x} \cdot \mathbf{a}=A, \quad \mathbf{x} \cdot \mathbf{b}=B

where ab\mathbf{a} \neq \mathbf{b}, satisfies

x2(AB)2ab2|\mathbf{x}|^{2} \geqslant \frac{(A-B)^{2}}{|\mathbf{a}-\mathbf{b}|^{2}}

What happens if a=b?\mathbf{a}=\mathbf{b} ?

(iii) Using your results from part (i), or otherwise, show that for any x1,x2,y1,y2Rn\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{y}_{1}, \mathbf{y}_{2} \in \mathbb{R}^{n},

x1y1x1y2x2y1+x2y2\left|\mathbf{x}_{1}-\mathbf{y}_{1}\right|-\left|\mathbf{x}_{1}-\mathbf{y}_{2}\right| \leqslant\left|\mathbf{x}_{2}-\mathbf{y}_{1}\right|+\left|\mathbf{x}_{2}-\mathbf{y}_{2}\right|