Paper 1, Section II, A
(a) A matrix is called normal if . Let be a normal complex matrix.
(i) Show that for any vector ,
(ii) Show that is also normal for any , where denotes the identity matrix.
(iii) Show that if is an eigenvector of with respect to the eigenvalue , then is also an eigenvector of , and determine the corresponding eigenvalue.
(iv) Show that if and are eigenvectors of with respect to distinct eigenvalues and respectively, then and are orthogonal.
(v) Show that if has a basis of eigenvectors, then can be diagonalised using an orthonormal basis. Justify your answer.
[You may use standard results provided that they are clearly stated.]
(b) Show that any matrix satisfying is normal, and deduce using results from (a) that its eigenvalues are real.
(c) Show that any matrix satisfying is normal, and deduce using results from (a) that its eigenvalues are purely imaginary.
(d) Show that any matrix satisfying is normal, and deduce using results from (a) that its eigenvalues have unit modulus.