Paper 3, Section II, D

Groups
Part IA, 2016

For each of the following, either give an example or show that none exists.

(i) A non-abelian group in which every non-trivial element has order 2.2 .

(ii) A non-abelian group in which every non-trivial element has order 3 .

(iii) An element of S9S_{9} of order 18 .

(iv) An element of S9S_{9} of order 20 .

(v) A finite group which is not isomorphic to a subgroup of an alternating group.