Define the binomial coefficient (nm). Prove directly from your definition that
(1+z)n=m=0∑n(nm)zm
for any complex number z.
(a) Using this formula, or otherwise, show that
k=0∑3n(−3)k(6n2k)=26n
(b) By differentiating, or otherwise, evaluate ∑m=0nm(nm).
Let Sr(n)=∑m=0n(−1)mmr(nm), where r is a non-negative integer. Show that Sr(n)=0 for r<n. Evaluate Sn(n).