Paper 1, Section II, D

Analysis I
Part IA, 2016

If (xn)\left(x_{n}\right) and (yn)\left(y_{n}\right) are sequences converging to xx and yy respectively, show that the sequence (xn+yn)\left(x_{n}+y_{n}\right) converges to x+yx+y.

If xn0x_{n} \neq 0 for all nn and x0x \neq 0, show that the sequence (1xn)\left(\frac{1}{x_{n}}\right) converges to 1x\frac{1}{x}.

(a) Find limn(n2+nn)\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+n}-n\right).

(b) Determine whether n=1n+1nn\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}} converges.

Justify your answers.